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Abstract 

There is growing interest in utilizing the range data of asset prices to study the role of 

volatility in financial markets. In this paper, we use a new range-based volatility 

model to examine the economic value of volatility timing in a mean-variance 

framework with three assets – stock, bond and cash. We compare its performance with 

a return-based dynamic volatility model in both in-sample and out-of-sample 

volatility timing strategies. For a risk-averse investor, it is shown that the predictable 

ability captured by the dynamic volatility models is economically significant, and that 

the range-based volatility model performs better than the return-based one. The results 

give robust inferences for supporting the range-based volatility model in forecasting 

volatility. 
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I. Introduction 

In recent years, there has been considerable interest in volatility. The extensive 

development of volatility modeling has been motivated by the related applications in 

risk management, portfolio allocation, assets pricing, and futures hedging. In 

discussions of econometric methodologies in estimating the volatility of individual 

assets, ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) have been emphasized 

most. Various applications in finance and economics are provided as a review in 

Bollerslev, Chou, and Kroner (1992), Bollerslev, Engle, and Nelson (1994), and Engle 

(2004). 

    Several studies, having noted that the range data based on the difference of high 

and low prices in a fixed interval, can offer a sharper estimate of volatility than the 

return data. A number of studies have investigated this issue, for example, Parkinson 

(1980), and more recently, Alizadeh, Brandt, and Diebold (2002), Brandt and Jones 

(2006) and Martens and Dijk (2007) 1 . Chou (2005) proposes a conditional 

autoregressive range (CARR) model which can easily capture the dynamic volatility 

structure and has obtained some satisfactory empirical results. 

However, the literature above just focuses on volatility forecast of a univariate 

asset. It should be noted that there have been some attempts to establish a relationship 

between multiple assets, such as VECH (Bollerslev, Engle, and Wooldridge (1988)), 

BEKK (Engle and Kroner, 1995), and a constant conditional correlation model (CCC, 

proposed by Bollerslev, 1990), among others. VECH and BEKK allowing 

time-varying covariance process are too flexible to estimate, and CCC with a constant 

correlation is too restrictive to apply on general applications. Seminal work on solving 

                                                 
1 See also Garman and Klass (1980), Wiggins (1991), Rogers and Satchell (1991), Kunitomo (1992), 
Yang and Zhang (2000), and Alizadeh, Brandt, and Diebold (2002). 
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the puzzle is carried out by Engle (2002a). A dynamic conditional correlation2 (DCC) 

model proposed by Engle (2002a) provides another viewpoint to this problem. The 

estimation of DCC can be divided into two stages. The first step is to estimate 

univariate GARCH, and the second is to utilize the transformed standardized residuals 

to estimate time-varying correlations. See also Engle and Sheppard (2001) and Engle, 

Cappiello, and Sheppard (2006). 

    A new multivariate volatility, proposed by Chou, Liu, and Wu (2007), combines 

the range data of asset prices with the framework of DCC, namely range-based DCC3. 

They conclude that the range-based DCC model performs better than other 

return-based models (MA100, EWMA, CCC, return-based DCC, and diagonal BEKK) 

through the statistical measures, RMSE and MAE based on four benchmarks of 

implied and realized covariance4.  

Because the empirical results in many studies show that the forecast models only 

can explain little part of variations in time-varying volatilities, some studies are 

concentrated on whether volatility timing has economic value (Busse (1999), Fleming, 

Kirby, and Osdiek (2001,2003), Marquering and Verbeek (2004) and Thorp and 

Milunovich (2007)). The question we focus on is whether the economic value of 

volatility timing for range-based volatility model still exists and to test whether 

investors are willing to switch from a return-based DCC to a range-based DCC model. 

    For comparing the economic value, it is helpful to use a suitable measure to 

capture the trade-off between risk and return. Most literatures evaluate volatility 

models through error statistics and related applications, but neglect the influence of 

                                                 
2 See Tsay (2002) and by Tse and Tsui (2002) for other related methods for estimating the time-varying 
correlations. 
3 Fernandes, Mota, and Rocha (2005) propose another kind of multivariate CARR model using the 
formula Cov(X,Y)=[V(X+Y)-V(X)-V(Y)] /2 . However, this method can only apply to a bivariate case.  
4 Daily data are used to build four proxies for weekly covariances, i.e. implied return-based DCC, 
implied range-based DCC, implied DBEKK, and realized covariances. 
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asset expected returns. A more precise measurement should consider both of them, but 

only few studies have so far been made at this point. However, a utility function can 

easily connect them and build a comparable standard. Before entering into a detailed 

discussion for the economic value of volatility timing, it is necessary to clarify its 

definition in this paper. In short, the economic value of volatility timing is the gain 

compared with a static strategy. For an investor with a mean variance utility, our 

concern is to estimate his will to pay for a new volatility model rather than a static 

one.  

In light of the success of the range-based volatility model, the purpose of this 

paper is to examine its economic value of volatility timing by using conditional 

mean-variance framework developed by Fleming, Kirby and Ostdiek (2001). We 

consider an investor with different risk-averse levels uses conditional volatility 

analysis to allocate three assets: stock, bond, and cash. Fleming, Kirby and Ostdiek 

(2001) extend West, Edison, and Cho’s (1993) utility criterion to test the economic 

value of volatility timing for the short-horizon investors with different risk tolerance 

levels5. In addition, we also examine the economic value for longer horizon forecast 

of selected models in our empirical study. This study may lead to a better 

understanding of range volatility. 

The remainder of this paper is laid out as follows. Section II introduces the asset 

allocation methodology, economic value measurement, and the return-based and the 

range-based DCC. Section III describes the properties of data used and evaluates the 

performance of the different strategies. Finally, the conclusion is showed in section 

IV. 

                                                 
5 They find that volatility-timing strategy based on one-step ahead estimates of the conditional 
covariance matrix (derived by Foster and Nelson (1996)) significantly outperformed the unconditional 
efficient static portfolios. 
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II. Methodology 

The method to carry out this study is to use a framework of a minimum variance 

strategy, which is designed by a time-varying covariance6. For a risk-averse investor 

with one-day horizon based on this strategy, we want to find the optimal dynamic 

weights and the implied economic value. Before applying the volatility timing 

strategies, we need to build a time-varying covariance matrix. The Details of the 

methodology are as the following. 

 

Optimal Portfolio Weights in a Minimum Variance Framework 

Initially, we consider a minimization problem for the portfolio variance subjected to a 

target return constraint. To derive our strategy, we let the expected return of a 1×K  

vector of risky asset returns as ][ 1+= tE Rμ 7 and its conditional covariance matrix 

as ]))([( 11 ′−−= ++ μRμRΣ tttt E . That can be formulated as 

tw
min ttt wΣw′ , 

s.t ( ) ettftt R arg1 μ=′−+′ 1wμw ,                                      (1) 

where tw  is a 1×K  vector of portfolio weights for time t. fR  is the return for the 

risk-free asset. The optimal solution to the quadratic form (1) is:  
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6 Merton (1980) points out that the volatility process is more predictable than return series. In the 
in-sample comparison, we assume the expected returns are constant. However, in the out-of-sample 
comparison (one- to thirteen-steps ahead), the expected returns will vary with the sample rolling. 
7 Through out this paper, we use blackened letters to denote vectors or matrices. 
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where fettett R−= argarg μμ& , fR−= 11 μμ& , and fR−= 22 μμ&  are the excess target 

returns and the excess spot returns of S&P 500 index (S&P 500) and 10-year Treasury 

bond (T-bond) in our empirical study. Under the cost of carry model, we can regard 

the excess returns as the futures returns by applying regular no-arbitrage arguments8. 

Furthermore, the covariance matrix tΣ  of the spot returns is the same as that of the 

excess (futures) returns.  

 

Economic Value of Volatility Timing 

Fleming, Kirby and Ostdiek (2001) use a generalization of West, Edison and Cho’s 

(1993) criterion which builds the relation between a mean-variance framework and a 

quadratic utility to capture the trade-off between risk and return for ranking the 

performance of forecasting models. According to their work, the investor’s utility can 

be defined as: 

( ) 2
,

2

, 2 tp
t

tptt RWRWWU α
−= ,                                           (4) 

where tW  is the investor’s wealth at time t, α is his absolute risk aversion, and the 

portfolio return at period t is ttftp RR Rw′+=, . 

For comparisons across portfolios, we assume that the investor has a constant 

relative risk aversion (CRRA), γααγ =−= )1/( ttt WW . This implies tWα  is a 

constant. With this assumption, the average realized utility )(⋅U  can be used in 

estimating the expected utility with a given initial wealth 0W . 

                                                 
8 There is no cost for futures investment. It means the futures return equals the spot return minus the 
risk-free rate. 
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where 0W  is the initial wealth.  

The value of volatility timing by equating the average utilities for two alternative 

portfolios is expressed as:  
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where Δ  is the weekly maximum expenses that an investor would be willing to pay 

to switch from the strategy A to the strategy B. tAR ,  and tBR ,  here are the returns of 

the strategy A and B9. 

     

Return-based and Range-based DCC 

We use the dynamic conditional correlation (DCC) model of Engle (2002a) to 

estimate the covariance matrix of multiple asset returns. It is a direct extension of the 

constant conditional correlation (CCC) model of Bollerslev (1990). The covariance 

matrix tΗ  for a vector of K asset returns in DCC can be written as: 

tttt DΓDH = ,                                                       (7) 

2121 /
tt

/
tt }diag{}diag{ −−= QQQΓ ,                                      (8) 

where, Dt is the KK ×  diagonal matrix of time-varying standard deviations from 

univariate GARCH models with tkh ,  for the kth return series on the kth diagonal. 

tΓ  is a time-varying correlation matrix. Let tkz ,  be the standardized residual of the 

                                                 
9 In our setting, we let the strategy pair (A,B) be (OLS, return-based DCC), (OLS, range-based DCC), 
and (return-based DCC, range-based DCC), respectively. Because the rolling sample method is adopted 
in the out-of-sample comparison, we call this kind of OLS a new name, rollover OLS. 
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kth asset, the covariance matrix ][ ,tijt q=Q  of standardized residual vector 

)',....( ,,1 tKtt zz=Z  is governed by: 

111)1( −−− +′+−−= tttt baba QZZQQ ,                                    (9) 

where }{ ijq=Q  denotes the unconditional covariance matrix of tZ . The coefficients, 

a and b, are parameters determining the evolution of the conditional correlations.  

For a bivariate system, the dynamic correlation can be expressed as: 
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    We can estimate the DCC model by the two-stage estimation through 

qusi-maximum likelihood estimation (QMLE) to get consistent parameter estimates. 

The log-likelihood function can expressed as CorrVol LLL += , where VolL , the 

volatility component, is ( )∑ −++−
t

ttttK rDrD 22 'log)2log(
2
1 π , and CorrL , the 

correlation component, is ( )∑ −+− −

t
tttttt ZZZRZR ''log

2
1 1 . The explanation is 

more fully developed in Engle (2002), and Chou, Liu, and Wu (2007). 

In addition to using GARCH to construct standardized residuals, we can also 

build them by other univariate volatility models. In this paper, we use the CARR 

model of Chou (2005) as an alternative for the specification for volatilities.. 

The CARR model is a special case of the multiplicative error model (MEM) of 

Engle (2002b). It can be expressed as: 
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where the range tk ,ℜ  is calculated by the difference between logarithm high and low 

prices of the kth asset during a fixed time interval t and it is also a proxy of standard 

deviation. tk ,λ  and kλ̂  are the conditional and unconditional mean of the range, 

respectively. tku ,  is the residual which is assumed to follow the exponential 

distribution. kσ  is the unconditional standard deviation for the return series. 

Considering different scales in quantity, the ratio kadj  is used to adjust the range to 

produce the standardized residuals. 

 

III. Empirical Results 

The empirical data employed in this paper consist of the stock index futures, bond 

futures and the risk-free rate. As to the above-mentioned method, we apply the futures 

data to examine the economic value of volatility timing for return-based and 

range-based DCC. Under the cost of carry model, the result in this case can be 

extended to underlying spot assets (Fleming, Kirby, and Osdiek (2001)). In addition to 

avoiding the short sale constraints, this procedure will reduce the complexity of model 

setting. To address this issue, we use the S&P 500 futures (traded at CME), and the 

T-bond futures (traded at CBOT) as the empirical samples. The futures data is taken 

from Datastream, sampling from January 6, 1992 to December 29, 2006 (782 weekly 

observations). Datastream provides the nearest contract and rolls over to the second 

nearby contract when the nearby contract approaches maturity. We also use the 

3-month Treasury bill rate to substitute for the risk-free rate. The Treasury bill rate is 

available in the Federal Reserve Board. 

< Figure 1 is inserted about here > 

    Figure 1 shows the graphs for close prices (Panel A), returns (Panel B) and 
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ranges (Panel C) of the S&P 500 and T-bond futures over the sample period. Table 1 

shows summary statistics for the return and range data on the S&P 500 and T-bond 

futures. The return is computed as the difference of logarithm close prices on two 

continuous weeks. The range is defined by the difference of the high and low prices in 

a logarithm type. The annualized mean and standard deviation in percentage, (8.210, 

15.232) of the stock futures returns are both larger than those (0.583, 6.168) of the 

bond futures returns. The fact indicates that the more volatile market may have higher 

risk premium. Both futures returns have negative skewness and excess kurtosis, 

indicating violation of the normal distribution. The range mean (3.134) of the stock 

futures prices is larger than that (1.306) of the bond futures prices. It is reasonable 

because the range is a proxy of volatility. The Jarque-Bera statistic is used to test the 

null of whether the return and range data are normally distributed. Undoubtedly, both 

of return and range data reject the null hypothesis. The simple correlation between 

stock and bond returns is small10 (-0.023), but it does not imply that their relation is 

very weak. In our latter analysis, we show that the dynamic relationship of stock and 

bond will be more realistically revealed by the conditional correlations analysis.  

< Table 1 is inserted about here > 

 

The In-sample Comparison 

For obtaining an optimal portfolio, we use the dynamic volatility models to estimate 

the covariance matrices. As for the parameters fitted for return-based and range-based 

DCC, they are both estimated and arranged in Table 2. We divide the table into two 

parts corresponding to the two steps in the DCC estimation. In Panel A, one can use 

GARCH (fitted by return) or CARR (fitted by range) with individual assets to obtain 
                                                 
10 The result is different from the positive correlation value (sample period 1983-1997) in Fleming, 
Kirby, and Osdiek (2001). About after 1997, the relationship between S&P 500 and T-bond presents a   
reverse condition. 
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the standardized residuals. Figure 2 provides the volatility estimated of the S&P 500 

futures and the T-bond futures based on GARCH and CARR. Then, these 

standardized residuals series can be brought into the second stage for dynamic 

conditional correlation estimating. Panel B shows the estimated parameters of DCC 

under the quasi-maximum likelihood estimation (QMLE). 

< Table 2 is inserted about here > 

< Figure 2 is inserted about here > 

The correlation and covariance estimates for return-based and range-based DCC 

are shown in Figure 3. It seems that the correlation becomes more negative at the end 

of 1997. A deeper investigation is given in Connolly, Stivers, and Sun (2005).  

< Figure 3 is inserted about here > 

Following the model estimation, we construct the static portfolio (built by OLS) 

using the unconditional mean and covariance matrices for getting the economic value 

of dynamic models. Under the minimum variance framework, the weights of the 

portfolio are computed by the given expected return11 and the conditional covariance 

matrices estimated by return-based and range-based DCC. Then, we want to compare 

the performance of the volatility models on 11 different target annualized returns (5% 

- 15%, 1% in an interval) . 

< Table 3 is inserted about here > 

Table 3 shows how the performance comparisons vary with the target returns and 

the risk aversions. Panel A shows the annualized means (μ ) and volatilities (σ ) of 

the portfolios estimated from three methods, return-based DCC, range-based DCC, 

and OLS. For a quick look, the annualized Sharpe ratios 12  calculated from 

return-based DCC (0.680) and range-based DCC (0.699) are higher than the static 

                                                 
11 Also see footnote 5 for a reference.  
12 The Sharpe ratio is constant with different target multipliers. 
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model (0.560). Panel B shows the average switching fees ( rΔ ) from one strategy to 

another. The value setting of CRRA γ  are 1, 5, and 10. As for the performance fees 

with different relative risk aversions, in general, an investor with a higher risk 

aversion would be willing to pay more to switch from the static portfolio to the 

dynamic ones. With higher target returns, the performance fees are increasing steadily. 

In addition, Panel B also reports the performance fees switching from return-based 

DCC to range-based DCC. Positive values for all cases show that the range-based 

volatility model can give significant economic value in forecasting covariance 

matrices than the return-based ones. Figure 4 plots the weights of in-sample minimum 

volatility portfolio derived from two dynamic models. In the meanwhile, OLS has 

constant weights for cash, stock, and bond, i.e. -0.1934, 0.7079, and 0.4855. 

< Figure 4 is inserted about here > 

 

The Out-of-sample Comparisons 

For robust inference, a similar approach is utilized to estimate the value of volatility 

timing in the out-of-sample analysis. Here the rolling sample approach is adopted for 

all out-of-sample estimations. It means that the rollover OLS method replaces the 

conventional OLS method which is used in the in-sample analysis. Each forecasting 

value is estimated by 521 observations, about 10 years. Then, the rolling sample 

method provides 249 forecasting values for one to thirteen-period ahead comparisons. 

The first forecasted value occurs the week of January 4, 2002.  

< Table 4 is inserted about here > 

    Table 4 reports how the performance comparisons vary with the target returns 

and the risk aversions for one period ahead out-of-sample forecast. We obtain a 

consistent conclusion with Table 3. The estimated Sharpe ratios calculated from 
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return-based DCC, range-based DCC, and rollover OLS are 0.504, 0.452, and 0.251, 

respectively. The performance fees switching from rollover OLS to DCC are all 

positive. In total, the out-of-sample comparison supports the former inference. Figure 

5 plots the weights that minimize conditional volatility while setting the expected 

annualized return equal to 10%.  

< Figure 5 is inserted about here > 

Table 5 reports one to thirteen periods ahead out-of-sample performance for three 

methods. The portfolio weights for all strategies are obtained from the weekly 

estimates of the one to thirteen periods ahead conditional covariance matrices with a 

fixed target return (10%). Roughly speaking, the Sharpe ratios got from range-based 

DCC is the largest, and return-based DCC is the next. For each strategy, however, we 

can not find an obvious trend in the Sharpe ratios with forecasting periods ahead. As 

for the result of the performance fees, it seems reasonable to conclude that an investor 

is still willing to pay to switch from rollover OLS to DCC. Moreover, the economic 

value seems to appear a decreasing trend with forecasting periods ahead. For longer 

forecasting horizon (11-13 weeks), however, the result of estimated economic value 

for the two dynamic models is not clear. As to the will switching from return-based 

DCC to range-based DCC, it always keeps positive. 

< Table 5 is inserted about here > 

 

IV. Conclusion 

In this paper, we examine the economic value of volatility timing for the range-based 

volatility model in utilizing the range data which combines CARR with a DCC 

structure. Applying S&P 500 and T-bond futures to a mean-variance framework with a 

no-arbitrage setting, the result can be extended to spot asset analysis. By means of the 
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utility of portfolio, the economic value of dynamic models can be obtained from 

comparing with OLS. Both of in-sample and out-of-sample results show that a 

risk-averse investor is willing to switch from OLS to DCC. Moreover, the switching 

fees from return-based DCC to range-based DCC are always positive. We can 

conclude that the range-based volatility model has more significant economic value 

compared to the return-based one. The results are entirely consistent with those 

reported in Chou, Liu, and Wu (2007). 
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Table 1: Summary Statistics for Weekly S&P 500 and T-bond Futures Return 
and Range Data, 1992-2006 

The table provides summary statistics for the weekly return and range data on S&P 
500 stock index futures and T-bond Futures. The returns and ranges are computed by 

1100 log( / )close close
t tp p −×  and )/log(100 lowhigh pp× , respectively. The Jarque-Bera statistic 

is used to test the null of whether the return and range data are normally distributed. 
The values presented in parentheses are p-values. The annualized values of means 
(standard deviation) for S&P 500 and T-bond futures are 8.210 (15.232) and 0.583 
(6.168), respectively. The simple correlation between stock and bond returns is -0.023. 
The sample period ranges form January 6, 1992 to December 29, 2006 (15 years, 782 
observations) and all futures data are collected from Datastream. 

 S&P 500 Futures T-Bond Futures 
 Return Range Return Range 

Mean 0.158 3.134 0.016 1.306 

Median 0.224 2.607 0.033 1.194 

Maximum 8.124 13.556 2.462 4.552 

Minimum -12.395 0.690 -4.050 0.301 

Std. Dev. 2.112 1.809 0.855 0.560 

Skewness -0.503 1.756 -0.498 1.390 

Kurtosis 6.455 7.232 4.217 6.462 

Jarque-Bera 421.317 985.454 80.441 642.367 

 (0.000) (0.000) (0.000) (0.000) 
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Table 2: Estimation Results of Return-based and Range-based DCC Model 
Using Weekly S&P500 and T-bond Futures, 1992-2006 

tktk cr ,, ε+= , 1,
2
,, −− ++= tkkitkkktk hh βεαω , ),0(~| ,1, tkttk hNI −ε , 

titktk u ,,, λ=ℜ , 1,1,, −− +ℜ+= tkktkkktk λβαωλ , ),1(~| 1, ⋅ℜ − expI ttk , 2,1=k . 

111)1( −−− +′+−−= tttt baba QZZQQ , and then 

])1][()1[(

)1(

1,22
2

1,2221,11
2

1,111

1,121,21,112
,12

−−−−

−−−

++−−++−−

++−−
=

tttt

ttt
t

bqazqbabqazqba

bqzazqba
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where tℜ  is the range variable, tZ  is the standard residual vector which is 
standardized by GARCH or CARR volatilities. }{ ,tijt q=Q  and }{ ijq=Q  are the 
conditional and unconditional covariance matrix of tZ . The three formulas above are 
GARCH, CARR and the conditional correlation equations respectively of the standard 
DCC model with mean reversion. The table shows estimations of the three models 
using the MLE method. Panel A is the first step of the DCC model estimation. The 
estimation results of GARCH and CARR models for two futures are presented here. 
Q(12) is the Ljung–Box statistic for the autocorrelation test with 12 lags. Panel B is 
the second step of the DCC model estimation. The values presented in parentheses are 
t-ratios for the model coefficients and p-values for Q(12). 

Panel A: Volatilities Estimation of GARCH and CARR models 
 S&P500 Futures T-bond Futures 
 GARCH CARR GARCH CARR 
c 0.188  0.008  
 (3.256)  (0.242)  
ω̂  0.019 0.103 0.028 0.075 
 (1.149) (2.923) (1.533) (2.810) 
α̂  0.051 0.248 0.060 0.157 
 (3.698) (9.090) (2.031) (5.208) 
β̂  0.946 0.719 0.902 0.785 
 (71.236) (23.167) (18.645) (18.041) 

Q(12) 26.322 5.647 15.872 23.121 
 (0.010) (0.933) (0.197) (0.027) 

Panel B: Correlation Estimation of Return- and Range-based DCC Models 
 S&P500 and T-bond 
 Return-based DCC Range-based DCC 

â  0.037 0.043 
 (4.444) (4.679) 

b̂  0.955 0.951 
 (85.621) (80.411) 
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Table 3: In-sample Comparison of the Volatility Timing Values in the Minimum 
Volatility Strategy Using Different Target Returns, 1992-2006 

The table reports the in-sample performance of the volatility timing strategies with 
different target returns. The target returns are from 5% to 15% (annualized). The 
weights for the volatility timing strategies are obtained from the weekly estimates of 
the conditional covariance matrix and the different target return setting. Panel A 
shows the annualized means (μ ) and volatilities (σ ) for each strategy. The estimated 
Sharpe ratios for the return-based DCC model, the range-based DCC model, and the 
OLS strategy are 0.680, 0.699, and 0.560, respectively. Panel B shows the average 
switching annualized fees ( rΔ ) from one strategy to another. The values of the 
constant relative risk aversionγ are 1, 5, and 10. 

Panel A: Means and Volatilities of Optimal Portfolios 
Return-based DCC Range-based DCC OLS Target 

return(%) μ  σ  μ  σ  μ  σ  
5 5.201 2.100 5.241 2.100 5.000 2.190 

6 6.366 3.814 6.438 3.813 6.000 3.977 

7 7.530 5.527 7.635 5.526 7.000 5.764 

8 8.694 7.241 8.832 7.239 8.000 7.551 

9 9.859 8.954 10.028 8.952 9.000 9.338 

10 11.023 10.668 11.225 10.665 10.000 11.125 

11 12.187 12.381 12.422 12.378 11.000 12.912 

12 13.352 14.095 13.619 14.091 12.000 14.699 

13 14.516 15.808 14.815 15.804 13.000 16.486 

14 15.680 17.521 16.012 17.517 14.000 18.273 

15 16.845 19.235 17.209 19.230 15.000 20.060 

Panel B: Switching Fees with Different Relative Risk Aversions 
OLS to Return DCC OLS to Range DCC Return to Range DCCTarget 

return(%) 1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  

5 0.303 0.376 0.393 0.343 0.417 0.434 0.040 0.041 0.041
6 0.703 0.950 1.008 0.777 1.025 1.084 0.074 0.076 0.076
7 1.244 1.771 1.897 1.353 1.883 2.009 0.109 0.112 0.112
8 1.929 2.845 3.063 2.073 2.994 3.213 0.144 0.149 0.151
9 2.761 4.173 4.507 2.940 4.360 4.696 0.180 0.189 0.191
10 3.739 5.753 6.224 3.956 5.979 6.453 0.217 0.230 0.233
11 4.866 7.578 8.206 5.121 7.846 8.477 0.255 0.273 0.277
12 6.142 9.641 10.441 6.434 9.951 10.754 0.294 0.318 0.324
13 7.565 11.932 12.914 7.897 12.283 13.270 0.334 0.365 0.373
14 9.135 14.436 15.609 9.507 14.831 16.009 0.375 0.414 0.424
15 10.851 17.142 18.509 11.262 17.580 18.952 0.418 0.466 0.479
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Table 4: Out-of-sample Comparison for the One Period Ahead Volatility Timing 
Values in the Minimum Volatility Strategy with Different Target Returns, 1992-2006 
The table reports the one period ahead out-of-sample performance of the volatility 
timing strategies with different target returns. There are 521 observations in each of 
the estimated models and the rolling sample approach provides 249 forecasting values 
for each out-of-sample comparison. The first forecasted value occurs the week of 
January 4, 2002. The target returns are from 5% to 15% (annualized). The weights for 
the volatility timing strategies are obtained from the weekly estimates of the one 
period ahead conditional covariance matrix and the different target return setting. 
Panel A shows the annualized means (μ ) and volatilities (σ ) for each strategy. The 
estimated Sharpe ratios for the return-based DCC model, the range-based DCC model, 
and the rollover OLS strategy are 0.504, 0.452, and 0.251, respectively. Panel B 
shows the average switching annualized fees ( rΔ ) from one strategy to another. The 
values of the constant relative risk aversion are 1, 5, and 10. 

Panel A: Means and Volatilities of Optimal Portfolios 
Return-based DCC Range-based DCC Rollover OLS Target 

return(%) μ  σ  μ  σ  μ  σ  
5 4.551 1.718 4.622 1.682 4.217 1.763 

6 5.184 3.119 5.315 3.054 4.578 3.202 

7 5.817 4.520 6.007 4.426 4.939 4.640 

8 6.450 5.921 6.699 5.798 5.300 6.079 

9 7.084 7.323 7.391 7.170 5.661 7.517 

10 7.717 8.724 8.083 8.542 6.022 8.956 

11 8.350 10.125 8.775 9.914 6.383 10.394 

12 8.984 11.527 9.467 11.286 6.744 11.833 

13 9.617 12.928 10.159 12.658 7.105 13.271 

14 10.250 14.329 10.851 14.030 7.466 14.710 

15 10.884 15.730 11.543 15.402 7.827 16.148 

Panel B: Switching Fees with Different Relative Risk Aversions 
OLS to Return DCC OLS to Range DCC Return to Range DCCTarget 

return(%) 1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  
5 0.375 0.404 0.411 0.478 0.530 0.543 0.104 0.126 0.132
6 0.742 0.840 0.863 0.977 1.150 1.190 0.236 0.312 0.330
7 1.165 1.372 1.420 1.574 1.937 2.022 0.412 0.574 0.613
8 1.644 2.000 2.084 2.270 2.892 3.037 0.632 0.914 0.982
9 2.180 2.725 2.853 3.064 4.011 4.232 0.897 1.334 1.438
10 2.772 3.546 3.727 3.955 5.293 5.601 1.207 1.834 1.984
11 3.420 4.463 4.705 4.945 6.731 7.139 1.564 2.416 2.619
12 4.125 5.473 5.785 6.031 8.321 8.838 1.967 3.079 3.344
13 4.887 6.575 6.964 7.213 10.055 10.689 2.416 3.825 4.160
14 5.704 7.768 8.239 8.488 11.926 12.684 2.914 4.653 5.064
15 6.578 9.047 9.607 9.857 13.928 14.813 3.458 5.562 6.057
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Table 5: Out-of-sample Comparison for One to Thirteen Periods Ahead Volatility 
Timing Values in the Minimum Volatility Strategy, 1992-2006 
The table reports the one to thirteen periods ahead out-of-sample performance of the 
volatility timing strategies with the fixed 10% (annualized) target return. The weights 
for the volatility timing strategies are obtained from the weekly estimates of the one to 
thirteen periods ahead conditional covariance matrix. There are 521 observations in 
each of the estimated models and the rolling sample approach provides 249 
forecasting values for each out-of-sample comparison. The first forecasted mean value 
occurs the week of January 4, 2002. Panel A shows the annualized means (μ ), 
volatilities (σ ), and Sharpe ratios (SR) for each strategy. Panel B shows the average 
switching annualized fees ( rΔ ) from one strategy to another. The values of the 
constant relative risk aversion are 1, 5, and 10. 

Panel A: Means and Volatilities of Optimal Portfolios 
Return-based DCC Range-based DCC Rollover OLS Periods 

Ahead μ  σ  SR μ  σ  SR μ  σ  SR 
1 7.717 8.724 0.452 8.083 8.542 0.504 6.022 8.956 0.251
2 7.868 8.830 0.464 8.477 8.559 0.549 6.068 8.933 0.257
3 7.371 8.807 0.408 8.318 8.584 0.529 6.660 8.931 0.323
4 8.117 8.838 0.491 8.736 8.605 0.577 7.103 8.928 0.373
5 8.464 8.860 0.529 9.071 8.664 0.611 6.869 8.989 0.344
6 9.088 8.903 0.597 9.565 8.664 0.668 7.232 8.973 0.385
7 9.361 8.840 0.632 9.967 8.634 0.717 7.872 8.945 0.458
8 8.853 8.897 0.571 9.388 8.704 0.645 7.644 8.975 0.431
9 9.806 8.878 0.679 10.022 8.714 0.717 8.476 9.023 0.521
10 9.746 8.887 0.672 9.517 8.716 0.659 8.189 8.983 0.491
11 9.436 8.908 0.636 8.899 8.700 0.589 8.031 8.910 0.478
12 8.737 9.003 0.551 7.962 8.816 0.475 7.424 8.853 0.412
13 8.713 9.111 0.542 8.277 8.939 0.504 7.794 8.867 0.453

Panel B: Switching Fees with Different Relative Risk Aversions 
OLS to Return DCC OLS to Range DCC Return to Range DCCPeriods 

Ahead 1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  1Δ  5Δ  10Δ  
1 2.772 3.546 3.727 3.955 5.293 5.601 1.207 1.834 1.984
2 2.282 2.633 2.716 4.126 5.344 5.625 1.874 2.809 3.030
3 1.293 1.721 1.823 3.263 4.416 4.684 1.984 2.748 2.929
4 1.440 1.758 1.834 3.136 4.226 4.482 1.712 2.526 2.720
5 2.210 2.665 2.773 3.720 4.817 5.073 1.531 2.226 2.393
6 2.191 2.442 2.503 3.783 4.839 5.087 1.617 2.481 2.689
7 1.993 2.373 2.464 3.558 4.635 4.889 1.585 2.334 2.515
8 1.581 1.861 1.928 3.022 3.962 4.185 1.456 2.154 2.322
9 2.028 2.556 2.683 3.018 4.113 4.372 1.007 1.620 1.770
10 2.019 2.370 2.455 2.596 3.539 3.763 0.593 1.230 1.385
11 1.416 1.424 1.426 1.858 2.597 2.773 0.457 1.217 1.401
12 0.593 0.037 -0.100 0.713 0.845 0.877 0.126 0.809 0.973
13 -0.269 -1.202 -1.436 0.139 -0.125 -0.189 0.406 1.045 1.199
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Panel A: Close Prices 
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Panel B: Returns 
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Panel C: Ranges 
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Figure 1: S&P 500 Index Futures and T-bond Futures Weekly Closing Prices, 
Returns and Ranges, 1992-2006. This figure shows the weekly close prices, returns, 
and ranges of S&P 500 index futures and 10-year Treasury bond (T-bond) futures over 
the sample period. 
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Panel A: Volatility Estimates for the GARCH Model 
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Panel B: Volatility Estimates for the CARR Model 
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Figure 2: In-sample Volatility Estimates for the GARCH and CARR Model 
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Panel A: Correlation Estimates 
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Panel B: Covariance Estimates 
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Figure 3: In-sample Correlation and Covariance Estimates for the Return-based 
and Range-based DCC Model 
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Panel A: In-sample Portfolio Weights Derived by the Return-based DCC Model 
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Panel B: In-sample Portfolio Weights Derived by the Range-based DCC Model 

-2

-1

0

1

2

3

1992 1994 1996 1998 2000 2002 2004 2006

Cash S&P 500 Tbond

 
Figure 4: In-sample Minimum Volatility Portfolio Weight Derived by the 
Dynamic Volatility Model. Panels A and B show the weights that minimize 
conditional volatility while setting the expected annualized return equal to 10%. The 
OLS model has constant weights for cash, stock, and bond, i.e. -0.1934, 0.7079, and 
0.4855. 
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Panel A: Out-of-sample Portfolio Weight Derived by the Return-based DCC 

Model 
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Panel B: Out-of-sample Portfolio Weight Derived by the Range-based DCC 
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Panel C: Out-of-sample Portfolio Weight Derived by the Rollover OLS Model 
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Figure 5: Out-of-sample Minimum Volatility Portfolio Weight Derived by the 
Dynamic Volatility Model for One Period Ahead Estimates. Panels A, B, and C 
show the one period ahead weights that minimize conditional volatility while the 
expected annualized return equal is set to 10%. Different from the in-sample case, the 
rolling sample method is used in the portfolio weights estimation. The portfolio 
weights in the rollover OLS model (Panel C) also vary with time. The first forecasted 
weights occur the week of January 4, 2002. 
 
 


