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Help and Factionalism in Politics and Organizations

I. Introduction

In politics, whether in a democracy or otherwise, there is often no shortage of

aspirants for public offices. In the United States, presidential hopefuls abound, but only a

relatively small number of candidates actually enter the race every four years. Some simply

stay out of the contest or drop out during the process, while others choose to support the

campaigns of other contenders. In less open political systems, when to stand up and be

counted and when to lie low and play loyal crony can be an even more tricky decision,

sometimes with more than a career at stake. So, when there are players of different calibres in

this political game, who would step into the ring and who would resign themselves to a

supporting role? Given that the strength of a campaign depends both on the ability of the

candidate and the support he receives, what determines the frontrunners and the underdogs?

These are interesting questions not just in the public arena but also within organizations as

well. Even though candidacies for promotion to senior positions are rarely openly announced

and battle lines are usually not clearly drawn, the jockeying for position and lobbying for

support are often played out in the corporate boardroom or even academic institutions with as

much ferocity and intrigue as in electoral politics, as individuals sort themselves into

different roles within and across contending factions. How then can we understand the

dynamics and the outcome of this process?

Whether it is a contest for public office or promotion within an organization, the

payoffs are usually fixed and entitlement to these rewards generally depends on relative

performance only (at the ballot box or by other assessment mechanisms). As such, the rank-

order tournament appears to offer an appropriate theoretical framework for the analysis of

incentives within the game. But while the economic efficiency of the tournament in eliciting
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effort has been well discussed in the literature (e.g. Lazear and Rosen 1981, Holmstrom

1982, Green and Stokey 1983, Nalebuff and Stiglitz 1983, Mookherjee 1984, and Malcomson

1986), the conventional model does not offer a ready explanation for helping or cooperative

behavior. Indeed, as Lazear (1989) points out, because hampering an opponent  has a similar

effect on the outcome as enhancing a candidate’s own performance, competitive pressure in a

contest can result in negative behavior among candidates, ranging from non-cooperation to

outright sabotage of other contestants’ work, which obviously compromises efficiency. Chen

(2003) and Munster (2004) extend the Lazear sabotage model to settings with multiple

heterogeneous players and find that because of the tendency for players to gang up on the

frontrunner, more productive candidates may not enjoy a higher chance of winning. This can

further contribute to inefficiency if sorting by ability into different positions is important in

production.

Because of the inevitably antagonistic nature of a contest, strategic interaction among

agents tends to have negative results. Eliciting cooperation among agents appears to be

difficult if not impossible. Although Lazear (1989) raises the possibility of “sainthood” (in

which a player derives utility from helping others at the expense of his own chance of

winning), his point is that even saints may fail when tempted with the opportunity to sabotage

the competition. Similarly, Grund and Sliwha (2002) find that not even “compassion,” an

aversion for pay inequity felt by winners of contests, can result in cooperative behavior in a

contest. When teamwork in the workplace is discussed in the literature, it is usually in a

context that does not involve compensation by relative performance. For example, Itoh

(1993) shows that when agents can more effectively monitor one-another’s behavior than the

principal can, the optimum solution to the agency problem may involve the principal

designing a coalition-proof contract to induce Pareto efficient efforts while delegating the
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implementation and enforcement to the agents themselves (through side-contracting). In

another paper, Itoh (1991) also finds that help for coworkers can be induced by conditioning

a worker’s pay not only on the output of his own task but also on those of his coworkers. In

neither case does the conventional tournament fit the requirements for an effective scheme in

promoting teamwork. More explicitly, Che and Yoo (2001) compares relative performance

evaluation (RPE) and joint performance evaluation (JPE) in a dynamic setting where implicit

incentives are generated by repeated interaction of the agents. They conclude that

compensation schemes based on JPE dominate those based on RPE because it is better able to

encourage coordination among workers in a long-term relationship.

 It would likely be futile to search for sainthood or compassion in politics or in the

boardroom, much less appeal to them for an explanation for the behavior of politicians or

corporate ladder-climbers. Yet, incentives for the allocation of efforts can look very different

once we recognise that in a real-world contest, the winner often has at his disposal certain

resources that can be distributed as rewards for friends and supporters. Winners of political

elections are often entitled to make political appointments or hand out patronage jobs as

paybacks for contributions of various sorts to their campaigns, while within a firm a newly

appointed CEO usually has the authority to pick members of his senior management team,

and more often than not, they would be his “close associates.” Given these payoffs, each

potential candidate in a contest must now decide whether to focus on improving his own

chance at winning the top position, or devote part or all of his efforts to help another

candidate. Such a decision obviously depends on the relative magnitudes of the payoffs (of

winning the “first prize” vs. getting a share of the “second prize,” the latter also affected by

the number of “helpers” who must be rewarded). It would also depend on the worker’s ability

relative to that of other candidates, as well as on the way in which help from supporters is
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translated into better performance for the candidate. Under plausible assumptions and given a

spread of the abilities of the players, we can show that a subgame perfect equilibrium always

exists in which faction leaders, unassisted contestants and helpers are sorted by ability. In

addition, by changing the rewards of the contest, different equilibrium structures of factions

can be induced, ranging from a grand coalition of all players assisting a single candidate to

every player pursuing his own chance at the top. These results can potentially offer insights

into how tournament schemes can be designed to elicit optimal effort coordination, or how

corporate cultures can arise from differences in production technologies.

The choice of the term “factionalism” over the more commonly encountered

“coalition formation” in the title of the paper is deliberate. The latter concept is often found

in the game theoretic literature that focuses on how coalition formation can affect final

resource allocation. One line of this research investigates the division of surpluses and the

efficiency of blocking coalitions in multi-person bargaining games (e.g. Chatterjee et al.

1993, Bloch 1996, Okada 1996, and Seidmann and Winter 1998). Another approach explores

coalition formation as a way of implementing the core of a coalition game in a

noncooperative manner (e.g. Perry and Reny 1994). This paper, on the other hand, tries to

characterize the coalitions that would be observed when all agents move unilaterally,

abstracting from bargaining and redistribution among agents. Moreover, this paper attempts

the problem within the structured setting of a rank-order tournament. Therefore, it does not

presume to offer a general solution to the 

coalition formation problem, and is only tangentially related to the game theoretic literature

on the topic.



1 By assuming effort to be fixed, we are abstracting from the work incentive effect of
a rank-order tournament and focus instead on the allocation of help within an organization.

5

II. The Model

A. Assumptions

Consider an organization with N heterogeneous workers, each of whom is a potential

candidate in a rank-order tournament. Each worker i is endowed with ability ti > 0, and one

unit of indivisible effort which he can use either to raise his own performance or to help

another worker.1 The effect of “help” and the stochastic structure of the contest can be

summarized by the following winning probability of player i:
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where ehi = the amount of help received by player i from player h, for i,h = 1,…,N, and f(.) is

a monotonic increasing function. This specification of the winning probability is similar to

those in Chen (2003) and Rosen (1986). The “multiplier” effect of the ability of the candidate

receiving help can be justified by Rosen (1983), which suggests that the productivity of a

senior worker is transmitted down the chain of command to those within his span of control.

It is also consistent with the empirical observation in Hamilton et al. (2003) that the most

productive member in a team has a greater influence on the team’s productivity.

The contest is played out in two stages. In the first stage, players decide whether to

present themselves as candidates in the contest and invest their effort on their own chances,

or to help another candidate win the contest. In the second stage, once the candidates have

identified themselves, helpers will decide on which candidate to help, and a candidate will

accept any offer of help. Each helper makes the decision on his own, taking the decisions of



2 Formation of a faction can be either implicit or explicit. It is interesting to note that
workers in Microsoft can choose the project they want to join, and workers in GE can choose
which division to work in. While there can be many reasons for such policies, they certainly
tend to encourage camaraderie, cooperation, and perhaps factionalism as well.

3 There can be potentially as many prizes as there are players, as in Green and Stokey
(1983), but as Nalebuff and Stiglitz (1983) shows, three different prizes often suffice in an
optimal scheme.
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all others as given. A faction arises when one or more players contribute their efforts in

helping the same candidate who becomes the leader of that faction.2

Because each player’s endowed effort is indivisible, there is no overlap in faction

membership. As a result, the sum of helping efforts in equation (1) simply gives the size of

the faction headed by player i. With the helpers out of contention for the top prize, let M (#

N) represents the number of candidates. If we further simplify by assuming f(x) = x, then

equation (1) reduces to

(2)
( )P i wins
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where ni = number of members in faction i (including player i, the faction leader).

The first-stage decision on whether to become a candidate or a helper depends on

each player’s anticipation of the distribution of helpers in the second stage and, of course, on

the payoffs of the contest. In the most basic contest with multiple agents, there may be two or

more fixed prizes to be awarded according to the rank order of the performance of the

candidates.3 We depart from the conventional setup in that, in additional to the winner’s prize

(W1) and the loser’s payoffs (normalized to zero), there is an additional fixed “second prize”

(W2 < W1) that is distributed at the discretion of, but cannot be pocketed by, the contest

winner. We assume that this amount would be divided equally among those who have helped



4 If the total number of players is large, then the expected payoff that other players
can get in case a solo contestant wins the contest is independent of marginal reallocation of
helpers across factions. It becomes a constant in each player’s (other than the solo
contestant’s) objective and will not affect his maximizing solution.
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the winner in the contest. If the winner received no help from anyone (other than himself),

then there is no reason for him to show favoritism towards any individual, and the “second

prize” will be distributed equally among all other workers.4

  To abstract from bargaining that can greatly complicate the problem, we preclude any

side-payments that redistribute the prizes among members within and across factions. In

many contexts, this may in fact be the reasonable assumption. A newly elevated CEO

promoting his lieutenants to senior positions, or an elected politician repaying political debts

with appointments in a new administration, usually cannot legally involve kickbacks or

bribes paid in either direction. While illicit or informal transfers cannot be ruled out, we do

not believe we are sacrificing too much generality with this simplifying assumption.

B. The Equilibrium

The two-stage problem constitutes an almost perfect information sequential game for

all players. We shall look for the (pure strategy) subgame perfect equilibrium using backward

induction, solving first for the equilibrium allocation of helpers before considering the sorting

of players into leading and supporting roles.

1. Allocation of Helpers Across Factions

Consider the second-stage problem when M (# N) players have declared their

candidacies for the first prize. If M = 0, then there are no contestants, and everyone gets zero.

If M = N, then there are no helpers to allocate and the expected payoff for each player will be

given by equation (2) for ni = 1 for all i = 1, ... , N. If 0 < M < N, the remaining N - M players

are helpers and will seek out and join the faction that maximizes their expected payoff, given
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the choices of all other helpers. Free mobility across factions is assumed but randomization is

not allowed. An equilibrium helper allocation is a list of helping effort n = (n1, ... , nM)  such

that:

ni $ 1      (3)

for all i = 1, ... , M ;
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Condition (3) states that each candidate must receive at least one unit of helping effort,

namely, his own. Condition (4) maintains that, for any faction with at least one helper, no

helper would find it optimal to unilaterally deviate and join another faction. Equation (5) is a

an add-up constraint requiring that efforts across factions sum up to total effort available.

Condition (4) can be rearranged to give
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From condition (3), we know that t1N $ 3M
k =1tk nk $ tMN. Therefore, as N gets large, the first

ratio on the LHS converges to 1. We shall maintain this assumption of a large N in the

following, so that equilibrium condition (2) can be simplified to
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for all j, and for all i such that ni > 1. These inequalities, together with conditions (3) and (5),

define an equilibrium in the second stage.

It can be shown that a second-stage equilibrium satisfying these conditions always

exists (refer to Appendix A for a formal proof). Intuitively, the expected payoff for a helper

in any faction i is proportional to

.λi
i i

i

t n
n

=
− 1

This is diminishing in the number of helpers in the faction - a larger faction raises the chance

of winning, but this effect is more than offset by the reduced share that each helper in the

faction can now get. Therefore, even if a faction initially offers higher expected payoff for

helpers and attract defectors from other factions, the incentive for further defectors to join

will decrease as the faction expands. The opposite is true in factions the ranks of which

shrink with defections, as there are now fewer helpers around to split W2 should the leader

win. This closes the gap for profitable deviation. An equilibrium is reached when payoffs for

helpers in each faction is no smaller than the maximum payoff from defecting to another

faction. Multiple equilibria can arise when some helpers are just indifferent between

deviating and not deviating (i.e. when condition (6) is binding for some i and j).

Nevertheless, such multiplicity is not robust to small perturbations to the abilities of the

faction leaders, giving us uniqueness for almost all values of the players’ abilities. We shall

assume this to be the case in the remaining parts of this paper.

Given the number and the abilities of the candidates, the equilibrium distribution of

helpers across factions has the following property:

Proposition 1: In an equilibrium allocation of helpers, the size of a faction is non-decreasing

in the ability of its leader.
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Proof:  Consider factions i and j and assume that ti > tj.  Condition (6) requires that, in

equilibrium,
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Rearranging gives ni $ nj - 1. Since both  ni and nj are integers, ni $ nj whenever ti > tj. #

The intuition behind this result is straightforward. If all factions were equal in size,

then a candidate of superior ability would have a higher chance of winning because of the

“multiplier effect” of the leader’s ability implied in equation (2). This would tend to attract

defectors from factions headed by less able candidates. Reallocation of helpers will continue

until condition (6) holds for all faction, at which point more productive candidates will have

attracted a larger number of helpers. With ni non-decreasing in ti, it is obvious from equation

(2) that a more able candidate will have a better chance of winning. This reinforcement of

innate superiority by helping behavior arises from mobility of helpers across factions. The

complementarity between the leaders’ ability and helping effort produces a positive

assortative matching that is standard in the literature (Becker 1973, Kremer 1993, Kremer

and Maskin 1996), but contrasts with the results in Chen (2003) and Munster (2004), where

the most able candidate tends to attract the most sabotage and may not emerge the most likely

winner.

In equilibrium, the number of candidates, M, may exceed the number of factions, L,

because some declared candidates may not be able to attract any helper. If a candidate l is

unsupported, then condition (6) becomes

λi lt≥ 2
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for all i such that ni > 1. Using the notation that λmin = min{λi|ni > 1}, this can be rewritten as

(7)λmin .≥ 2tl

This inequality defines an upper bound for the ability of singleton candidates.  If, in

equilibrium, this inequality is not satisfied for any candidate, then the contest is played

among faction leaders. However, if it holds for some l, since ni/(ni - 1) # 2 for ni > 1, it must

be the case that tl # ti. Therefore, “singletons,” if they exist, have lower ability than the least

able faction leader. If a candidate fails to attract helpers, it is because his chance of winning

is too low to offer a competitive expected payoff for potential helpers. In fact, this result can

be interpreted as an extension of Proposition 1: less able candidates get fewer helpers, and in

the extreme, they may get no helper at all.

The second-stage equilibrium is a function of the number and abilities of the

candidates. Any change in these variables will result in realignment of helpers across

factions. The identities of the M candidates can be completely described by a profile of their

abilities, t = (t1, ... , tM), and suppose there is an increase in the ability of one candidate i. That

is, consider a change from t to t’ such that
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The effect on the allocation of helpers can be summarized by the following proposition:

Proposition 2: When the ability of candidate i increases, holding constant the abilities of all

other candidates and the number of helpers, then

(i) The size of faction i cannot fall;

(ii) For any j … i, the size of faction j cannot rise; and

(iii) The minimum payoff to helpers cannot fall.



5 As long as the equilibrium allocation at each step of such an analysis is unique, breaking
one change into multiple steps of changes is without loss. In the unlikely case of non-
uniqueness, the result characterizes one of the possibly multiple equilibria.
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Proof: See Appendix B.

An exogenous increase in the ability of a candidate raises the expected payoffs for his

helpers and attracts defectors from other factions. His faction therefore tend to expand at the

expense of other factions. This would increase payoffs for the remaining helpers in other

factions in general, and the minimum payoff for helpers in particular. The addition of a new

candidate could be thought as an increase in ability of a candidate from zero to some positive

number, while a reduction in the number of candidates, a change in the reverse. Therefore,

Proposition 2 also applies to the effect of a change in the number of candidates, holding

constant the number of helpers. Changes to the abilities of multiple candidates can also be

analyzed by repeatedly using the results from an increase in one candidate’s ability.5

The lineup of candidates is endogenous. It is determined in the first stage of the game

when each player, given the anticipated outcome of the second stage allocation as described

in this section, decides whether to enter the tournament as a candidate or resign himself to a

supporting role.

2. Self-Selection into Candidates and Helpers

In the first stage, each player will choose to be either a candidate or a helper,

whichever yields a higher expected payoff in the second-stage equilibrium allocation

resulting from his choice, given the choices of other players. However, an equilibrium helper

allocation in the second stage can only be defined in terms of the number of helpers in each

faction. It does not specify which particular candidate will be helped by each helper. For

example, given a set of candidates and a corresponding second-stage equilibrium allocation

of helpers in which helper 1 is in faction i while helper 2 is in faction j, switching the
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allegiance of helpers 1 and 2 without any further change would also result in a second stage

equilibrium. Yet the expected payoffs for helpers are not necessarily the same, as helpers 1

and 2 may be getting different payoffs in these two second-stage equilibria, even if all players

have made the same first-stage choices in both cases. Because of the different outcomes to

helper 1 in the two cases, his first-stage decision may depend on which assignment of helpers

will occur should he become a helper. In general, given a set of candidates, even if the

equilibrium helper allocation, n = (n1, ... , nM), is unique in the second stage, there are still (N

- M)! different ways to assign the helpers to achieve the same allocation n. As  λi will be

different for different i, to the players in the first stage, there may be up to (N - M)!

equilibrium continuations to the subgame with the same set of candidates. Furthermore, for

each possible set of candidates, there are also multiple equilibrium continuations to each

subgame with that particular set of candidates. The first stage choice of each player,

therefore, depends on the particular combination of equilibrium continuations at each and

every subgame. In the following, we shall first characterize the optimal first-stage choice for

each player, given a particular combination of equilibrium continuations, before deriving a

general characterization of all subgame perfect equilibria of the complete contest.

Where no confusion may arise, let N = {1, ... , N} be the set of all players. Then a set

of candidates can be denoted as Γ f N, with cardinality M. Let S be the collection of all

possible sets of candidates with at least one candidate and at least one helper.

Mathematically, S is the set of all non-empty proper subsets of N.

For any non-empty Γ, let n(Γ) = (n1(Γ), ... , nM(Γ)) be the equilibrium helper allocation

in the second stage given Γ, and λ(Γ) = (λ1(Γ), ... , λM(Γ)) the equilibrium values of λ induced

by Γ. Following earlier notations, λmin(Γ) represents the minimum λi(Γ) among all factions in

the second-stage equilibrium helper allocation.
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If there are at least one candidate and at least one helper, we can specify an

assignment of helpers to factions such that the total number of helpers in each faction is equal

to the equilibrium helper allocation. Formally, for each Γ 0 S, a helper assignment is a

function aΓ: N \ Γ 6 Γ such that

#{j 0 N \ Γ | aΓ(j) = i} = ni(Γ)      for all i 0 Γ.

In effect, for each helper j, this function assigns to him a candidate i such that the number of

helpers each candidate gets is the equilibrium number of helpers in the second stage. In other

words, an assignment function specifies the equilibrium continuation to a particular subgame.

As we noted earlier, given each Γ, the assignment function is not unique, but for a particular

aΓ, helper j will be assigned to faction aΓ(j) and get λaΓ(j)(Γ) accordingly. To avoid notational

clutter, we adopt the shorthand   λa(j)(Γ) = λaΓ (j)(Γ). In the case where there are no candidates,

λa(j)(0/ ) = 0 for all j 0 N.

Consider any set of candidates Γ. Given the assignment functions for all possible sets

of candidates {as}s0S, Γ is an equilibrium set of candidates if and only if,

for all i 0 Γ,     (8)( )
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Condition (8) requires that, for any candidate, the payoff from deviating to become a helper,

given the assignment of helpers after his deviation, is lower than his equilibrium payoff as a

candidate. Similarly, condition (9) suggests that, for any helper, given the current helper

assignment, it is not profitable to deviate and become a candidate. The two conditions

together imply that no player could find unilateral profitable deviations given the strategy of
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all other players and the specified equilibrium continuation to the subgame should they

deviate. Therefore, any (pure strategy) subgame perfect equilibrium of the whole contest can

be characterized by a profile of assignment functions and a partition of the player, ({as}s0S,

Γ), such that given {as}s0S, Γ satisfies the system of inequalities given by (8) and (9).

It is obvious that there can be multiple subgame perfect equilibria. Theoretically, we

can select a possible combination of the assignment functions, {as}s0S, go through all Γf N

and check whether conditions (8) and (9) are satisfied for each, hence finding all equilibrium

sets of candidates given this particular combination of assignment functions. Repeating this

exercise for each and every possible combination of assignment functions, we can find all

subgame perfect equilibria of the contest. Nevertheless, doing so analytically is a tedious

exercise that yields few insights. So, instead, we shall focus on a class of subgame perfect

equilibria in which all candidates are more able than all helpers. In other words, if we order

the players such that t1 $ t2 $ ... $ tN, then in this class of equilibrium, the first M players will

become candidates while the remaining will be helpers. Since players are sorted into the

leading and supporting roles perfectly by their ability in this class of equilibrium, we call it a

Perfect Sorting Equilibrium. Some results on this class of equilibrium can be summarized as

follows:

Proposition 3: Given the set of players and the reward structure, there always exists a perfect

sorting equilibrium that is subgame perfect. The number of candidates in such an equilibrium

can range from 1 (everybody belongs to a grand coalition) to N (everyone is a candidate).

More precisely, there always exists a natural number M, 1 # M # N, and a combination of

assignment functions {as}s0S such that ({as}s0S, Γ) satisfies conditions (8) and (9) for Γ = {1,

..., M}.

Proof: See Appendix C.
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Under the assumptions of our model, the intuition behind perfect sorting is obvious.

Because of the multiplier effect of a leader’s ability, more productive players have an

advantage as candidates, while less able players would benefit more from supporting roles

because of the homogeneity of helping efforts. The existence of a perfect sorting equilibrium,

however, does not preclude the possibility of equilibria in which some helpers are superior in

ability to some candidates. Imperfect sorting arises mainly from a coordination problem

among players. Even if there is no coordination issue in the second stage (for example, if the

difference in payoffs across factions is insignificant), it is still possible that sorting is

imperfect in the first stage. With some equilibrium sets of candidates, helper i may be

superior in ability to but enjoys a lower expected payoff than candidate j, because i’s entry

into the contest may lower the payoffs for all candidates (including i’s) by so much that i is

better off not deviating from his initial helping role. Thus, even if there is a joint deviation by

players i and j (e.g. the players switching roles) that would not make either of them worse off,

it cannot happen in our setup, as only unilateral decisions are allowed. This contrasts our

result with the usual coalition formation literature in cooperative game theory, in which a

subset of players can jointly improve their payoffs as long as none of them are made worse

off (e.g.: Chatterjee et al. 1993; Perry and Reny 1994).

Despite the possibility of imperfect sorting equilibria, we shall focus, from now on,

on the more interesting case of a perfect sorting equilibrium and explore its comparative

statics in the next section.

C. Comparative Statics in a Perfect Sorting Equilibrium

In the sorting equilibrium described in the previous section, the candidates are always

the most able players. Therefore, given the distribution of the players’ abilities, the

characteristics of the candidates are completely described by the number of candidates M.
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The equilibrium expected payoffs for helpers of these candidates need not be equal because

of discreteness in the number of faction members. Nevertheless, keeping track of the

inequalities at the margin complicates derivations without offering any additional insight.

Accordingly, in the following, we shall simplify the analysis by assuming exact equalization

of expected payoffs for helpers across factions in an equilibrium, so that 

          (10)
( )

( )
( )

( ) ( )t n M
n M

t n M
n M

Mi i

i

j j
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=

−
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1 1
λ

for all i, j such that ni, nj > 1. Condition (7) for singleton candidates can now be rewritten as

           (11)( )
t

M
l ≤

λ
2

and an equilibrium allocation of helpers can then be characterized by equations (10), (11) and

(5). Also, in a perfect sorting equilibrium, conditions (8) and (9) together imply that for 1 <

M < N,
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ξ(M) represents the chance for the marginal player of securing rewards as a candidate relative

to his chance as a helper, weighted by the share that he can get in the case of success. It

reduces to (nM(M) - 1)(N - M + 1)/(N - M) when there are no singleton candidates. Equation

(12) shows that in a perfect sorting equilibrium, ξ(M) must be non-increasing locally in M so

that the incentive to contest rather than help tend to increase with ability. These equations
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will be used to derive the comparative static results on the effects of exogenous changes in

the structure of the tournament and in the abilities of contestants on a perfect sorting

equilibrium.

1. A Change in the Reward Structure

For simplicity, assume that equation (12) is binding in an initial equilibrium with M

contestants, so that

,           (13)( )ξ M
W
W

= 2

1

where Δξ(M)/ΔM # 0. It then follows that, in a perfect sorting equilibrium,

.
Δ
Δ

Δ
Δ

M
W

W
W M1

2

1
2 0= − >

ξ

The incentive effect of a change in the top prize is obvious: a larger W1 is going to encourage

more players to become candidates, leaving fewer available helpers. The resulting reduction

in faction sizes increases the equilibrium payoffs for helpers and therefore λ. This also raises

the upper bound for singleton candidates (equation (11)), which implies that more candidates

will find it difficult to attract the fewer helping hands around, and some may end up not

having any at all. Hence, an increase in W1 is going to increase the number of candidates but

reduce the size of incumbent factions, while increasing the likelihood or the number of

unassisted candidacies. In the extreme case, when W1 is very large, everyone becomes

singleton candidates.

Because W2 enters into the equilibrium conditions only as a ratio of W1, its effect on

the equilibrium factional structure is exactly the opposite of that of W1:

Δ
Δ

Δ
Δ

M
W W M2 1

1 0= <
ξ
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Thus, an increase in the “second prize” will encourage more workers to become helpers,

reduce the number of contestants (particularly of singleton candidates), but raise the number

and the size of factions. As W2 converges towards W1, only the most able worker will have

the incentive to go for the top prize, and everyone else plays a supporting role in a grand

coalition headed by the top player in a non-contest.

2. A Change in the Spread of Abilities

The effect of a more lopsided contest on the equilibrium factional structure can be

analyzed by extending the spread of the abilities of the workers. Consider equal and opposite

changes in the abilities of two players p and q, so that Δtp = -Δtq > 0. Suppose tp > tq, so that

the changes leave the average ability of all workers unchanged but increase the variance of

the abilities. The effect of such a change will depend on whether p and q are leaders or

helpers in the initial equilibrium. There are three different cases.

a. Both p and q are helpers or singleton candidates

If both p and q are helpers or singletons, then as long as the changes are not large

enough to change their status, the equilibrium will not be perturbed since the factional

structure depends only on the abilities of leaders.

b. p is a leader and q is a helper (or singleton candidate)

As in the first case, the change in tq has no effect, but an increase in tp will cause a

reshuffling of helpers across factions in the second stage of the game. Using equation (10),

the size of any faction nk can be expressed as a function of an arbitrary ni, for i 0 [1,L] and L

# M. Substituting into equation (7) gives

,            (14)
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which implies that
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where n and n’ represent respectively faction sizes before and after the change in tp. In other

words, holding M constant, an increase in the ability of a faction leader is going to boost

support for his candidacy at the expense of all others. But as the number of helpers in other

factions drops, λ increases and changes decisions in the first stage. Equation (13) implies that

.
Δ
Δ

Δ
Δ

Δ
Δ

M
t t Mp p

= −
ξ ξ

It can be shown that Δξ/Δtp < 0 (see Appendix D). Given (12), this implies that ΔM/Δtp < 0.

Intuitively, the rise in λ signals a higher payoff for helpers, resulting in a reduction in the

number of candidates. The effect on the number of singleton candidates is, however,

ambiguous, as the upper bound for the ability of these candidates (defined by equation (11))

also increases with λ. Nevertheless, a more uneven distribution of abilities will tend to

discourage competition both by reducing the number of candidates and by redistributing

helpers in favour of the strengthened candidate. In the extreme case, when p = 1 and t1

becomes very large, the runaway favorite siphons off support from all potential challengers,

resulting in a grand coalition.
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c. Both p and q are faction leaders

In this case, the effect of equal and opposite changes in tp and tq (Δtp > 0) on the size

of each faction in the second stage allocation is the sum of two separate effects. Using

equations (15) and (16), the effect on np can be written as:
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while the effect on nq is
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In both cases, the two effects are reinforcing, causing the strengthened candidate’s faction to

expand and the weakened candidate’s faction to contract. The effect on ni (i … p,q) can be

expanded using equation (15):

 .
( ) ( )Δ

Δ
Δ

Δ
Δ

Δ
n
t

t n
t

t
n n

t n n
n n n ni

p
p

i

q
q

i i

k k k
k

L q q p p+ =
−

−

=
∑

'

'
' '

1

1

Since np > nq and  np’ > nq’, the net effect is negative. In this case, the two effects of the

changes in tp and tq on the size of any other faction are offsetting, with the faction losing

support to p but gaining helpers from q. The former effect dominates, however, and faction p

emerges as the only faction to gain strength while all others (and faction q in particular)

shrink, given the total number of helpers. Therefore, the qualitative result is the same as in

case b above, and the same analysis of first stage decisions on candidacy applies, with 

ΔM /Δtp < 0 and a reduction in the number of candidates in a more lopsided contest.

These results indicate that a more skewed distribution of the abilities of leaders will,

in general, result in fewer factions and less competition. Having a frontrunner (or
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frontrunners) in a contest will therefore facilitate consolidation of support as helpers gravitate

towards this contestant(s), and marginal candidates may no longer find it worthwhile to fight

a losing cause. This is perhaps most vividly illustrated in electoral politics. In U.S.

presidential primaries, the fates of candidates are often sealed by elections in a few crucial

states. Those who fall behind at these junctures will face dwindling resources that will often

force them to withdraw, while the candidacies of frontrunners will gain further strength by

absorbing the support for failed candidates. In fact, unity is important at the end of a primary

contest as the party prepares itself for the external challenge that follows. It is therefore not

coincidental that incentives are designed so that a primary race is rarely taken all the way to

the party convention which, more often than not, is staged as a coronation rather than a final

showdown.

Whether in a political election or a promotion tournament within a firm, the absence

of frontrunners or strong candidates can have significant implications both before and after a

contest. Apart from compromised performance during the contest due to the lack of

cooperation among players, the winning candidate can also be hampered by the dearth of

talent in his team after the dust settles. This is because a crowded field with no favourites

reduces the number as well as the quality of helpers. Whoever wins the contest will then 

have to appoint mediocre supporters to senior administrative or executive positions. It is

therefore not coincidental that fragmented political systems with no dominant parties are

often perenially plagued by poor governance that further contributes to instability and

stagnation.
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III. Discussion and Conclusion

In this paper, we have presented a model for help and factionalism in politics and

within organizations. It is shown that if the winner of a contest is given control over

resources that he can use to reward supporters, help among players is encouraged as factions

form around candidates. The sorting into leading and supporting roles is, however, not

random, as helpers are generally inferior in abilities to leaders. It is also shown that more able

leaders will always attract more helpers in equilibrium, and therefore stand a better chance of

winning the contest. The least able candidates may not enjoy much support and may even be

left to fend for themselves in the contest. 

The number of candidates and the size of factions are also affected by the reward

structure. A larger top prize relative to the “second prize” that is to be distributed among

supporters of the winner will result in more factions and less cooperation among players,

while the opposite is true if the second prize is large. This implies that by manipulating these

rewards, a firm can induce as much or as little help among its workers as needed. A more

decentralized organizational structure, in which division or team leaders are allowed greater

discretion in personnel or resource allocation decisions, may encourage teamwork and

cooperation within the division. There may be less industrial politics at the top levels if the

CEO is given a freer hand in appointing his top assistants, not just because of better working

relationship between the CEO and his own appointees after his promotion, but also because

of less factionalism and greater cooperation within factions in the competition for the

position.  Lazear (1989) also observes that in a firm organized by products, the CEO is often

chosen from among heads of different product divisions, because it is important to maintain

cooperation among colleagues working on the same product line. Extending that argument,

our analysis suggests that there tends to be more “cronyism” in firms with such
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organizational structures, because having more resources for rewarding supporters would

facilitate teamwork within divisions.

The reward structure may, however, also depend on the technology of production as

suggested by Itoh (1991). Even if we abstract from the incentive effects of a compensation

scheme on workers’ efforts, it is still not the case that less competition and greater

cooperation is always to be preferred. In some creative industries, diversity is a very

important part of the production process and competing ideas should be encouraged rather

than restrained. This is particularly the case if team production is subject to high diminishing

returns and cooperation among workers does not result in substantial gain in team

productivity. Thus, a disproportionate reward for the top performer may provide the right

incentive in architectural firms and haute couture houses where the competing teams are

relatively small. In the extreme case, when there is no complementarity in different workers’

inputs, it may be more efficient for the firm to offer a simple tournament scheme with no

payoff for helping.

Much has been said about differences in corporate cultures across firms. Some firms

thrive on a competitive environment that encourages a rivalrous relationship among workers

in order to bring out their best efforts. Others value camaraderie and congenial relationship

among colleagues that foster cooperation. The contrast extends to international comparisons

as well. It is often suggested that the team spirit is emphasized in Japanese corporations while

individual achievements and innovations are more prized in western, particularly U.S.,

corporate cultures. Ultimately, such differences across firms and countries may be just a

reflection of differences in incentive schemes dictated by the underlying management

philosophies and the choice of production techniques, certain aspects of which have been

discussed above. 
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Although the proposed relationship between the workers’ helping behavior and the

firm’s compensation scheme is intuitive, it is difficult to find empirical support for the

hypotheses from corporate data, as some key variables (such as the “second prize” to be

shared among helpers, the size of factions, and the number of candidates) are not readily

observable. However, the application of our analysis to political elections suggests a more

ready source of data. Just like an executive climbing the corporate ladder, an aspiring

politician faces the same dilemma of whether to present himself as a candidate in an election

or play a supportive role in the hope of earning a future political appointment or other favors.

Altering the structure of rewards can therefore profoundly affect participation in the electoral

process and the makeup of party electoral politics. With different offices offering different

resources directly and indirectly available to winning candidates, often clearly defined in

statutory terms, and campaign organization and funding potentially observable, political

elections in different jurisdictions present a natural experiment for testing the relationship

between reward structure and helping behavior. This also suggests that, whether in the

corporate boardroom or the corridors of power in the government, our model can offer

potentially interesting and useful insights into designing the right incentive mechanism.
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Appendix

A. Second Stage Equilibrium

In this appendix, we will construct an algorithm to show the existence and generic

uniqueness of a second stage equilibrium helper allocation.

Suppose there are M candidates. An allocation of helper is an M-tupled n = (n1,..., n2)

satisfying

for all i = 1, ... , M, n
i
≥ 1

and .n Ni
i

N

=
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The algorithm goes in rounds. Denote the allocation of helpers in round r as nr = (nr
1,..., n r
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Ties, if any, are broken lexicographically. The algorithm stops at round r if λr
j (r) $ λ8 r

k(r).

If, instead,  λr
j (r) < λ8 r

k(r), define
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and continue to run the algorithm.

The idea of the algorithm is simple: at each round, given an allocation of helping

effort, we look for the lowest current payoff to a helper and the highest possible payoff from

a unilateral deviation. If the latter is strictly higher than the former, we move one helper from

the faction that is currently offering the lowest payoff to the faction that is offering the

highest for a defector. Notice that, as  λr
i $ λ8 r

i for all i and for all r, whenever there is a move it

must involve two factions, so the "deviation" in the algorithm is well-defined.

This algorithm has two useful properties:

Lemma 1: If a helper joins faction i at some round r > 0, then for any later rounds, no helper

will leave faction i. More precisely, if nr
i
+1 = nr

i + 1, then  nρi +1 $ nρi  for all ρ > r.

Proof: Suppose not. Then there is a round ρ > r such that nρi +1 < nρi . Further assume that  nρi  =

nr
i
+1, that is, round ρ is the first time after r that the number of helpers in faction i has

changed. (This is without loss of generality, since we can pick ρ to be the first round after r

that a helper leaves faction i. If some other helpers have joined faction i between round r and

ρ, call the last round before ρ in which this happens round r’ and use r’ in place of r for the

analysis.) Suppose at round ρ, faction i loses a helper to faction j. This means that
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These two inequalities together implies that  nρj  < nr
j, meaning that faction j must have lost at

least one helpers between round r and ρ. Thus, there exists an s such that r < s < ρ and nρj

 = ns
j - 1. However, at round s, condition (A1) requires

( ) ( )
λ λ
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which means that faction j could not have lost a helper in round s. This is a contradiction. #

Lemma 2: If a helper leaves faction i at some round r > 0, then no helper will join faction i in

any subsequent round. More precisely, if if nr
i
+1 = nr

i - 1, then  nρi +1 # nρi  for all ρ > r.

Proof: Omitted. This is simply reversing the direction of the proof of Lemma 1.

An immediate consequence of these two properties is that, given any set of candidates

and any initial allocation of helpers n0 such that n0
i  $ 1 for all i and 3M

i =1 ni = N , the algorithm

we described must stop in some finite time. This is because the size of a faction can only

change monotonically as the algorithm runs, and there are only finitely many helpers to be

added to or removed from a faction.

For the existence result, it remains to show that when the algorithm stops at round r,

the helper allocation nr is indeed an allocation of helpers satisfying the equilibrium conditions

of the second stage problem. Recall that the second stage equilibrium helper allocation

requires

ni $ 1 for all i,

λi $ λ8 j for all j such that nj > 1, for all i,

and .n Ni
i

M

=
∑ =

1

The first and the third conditions are trivially satisfied by construction. Notice that the

algorithm stops at round r only if
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meaning that the second condition is also satisfied. Therefore, nr is indeed an equilibrium

helper allocation. As the algorithm always stops at some finite time and gives n for any set of

candidates and any initial helper allocation, a second stage equilibrium helper allocation

always exists.

For the uniqueness result, suppose there are two equilibrium helper allocations, n and

n’, given a set of candidates. If n … n’, then there exists i, j such that ni > n'i and  nj < n'j . Since

n is an equilibrium helper allocation,
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Similarly, as n’ is an equilibrium helper allocation,

.
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These inequalities can only be true if they all hold as strict equality. Therefore, we have

λi = λ8 j = λ'j = λ8'i.

But this implies that, in the n equilibrium, helpers in faction i is just indifferent between

staying and deviating to faction j, while in the n’ equilibrium, helpers in faction j are

indifferent between stay and deviating to faction i. Thus, multiple equilibria can only result

from indifference at the margin. Moreover, if we perturb ti to t˜i = ti + g for any g > 0, then

λ˜ i > λi = λ'j.

and there can no longer be multiple equilibria (between factions i and j). Similarly, if we

perturb  ti to t˜i = ti - g, there will be no multiple equilibria either. Since the multiplicity of

equilibria is not robust to any small perturbation to the ability values, we may say that the
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second stage equilibrium helper allocation is generically unique. More precisely, if we draw

the profile of ability according to some smooth, continuous distribution, we can draw an

ability profile that gives a unique second stage equilibrium with probability 1.

B. Proof of Proposition 2

Proposition 2: When the ability of candidate i increases, holding the ability of all other

candidates and the number of helpers unchanged, then

(i) The size of faction i cannot fall;

(ii) For any j … i, the size of faction j cannot rise; and

(iii) The minimum payoff to helper (and therefore λmin) cannot fall.

Proof: Denote the original ability profile as t = (t1, ... , tM)  and the new one as t’ = (t'1, ... t 'M).

Write the original equilibrium allocation as n. We will use the original equilibrium as the

initial allocation and run the algorithm constructed in Appendix A to obtain the new

equilibrium allocation, .

To show (i), consider the initial condition of the algorithm. Since
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0 1
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while λ0
j  = λj and λ80

j  = λ8 j for all j … i, if there is an adjustment in the first round, it must involve

adding a helper to faction i. By Lemma 1, faction i cannot lose any helper in the later rounds

of the algorithm, so n'i > ni. If instead there is no adjustment in the first round, n’= n and n'i =

ni.

To prove (ii), suppose not and there is a faction j … i with n'j > nj.  Let the first

additional helper to faction j come from faction k in round r. This means that
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Since n is an equilibrium,

.
( )t n

n
t n

n
j j

j

k k

k

+
≤

−

1

1

Since t'k $ tk, these two inequalities together implies nr
k > nk. But this means that faction k must

have gained at least one helper before round r. By Lemma 1, it cannot lose a helper to faction

j. This is a contradiction.

To see (iii), notice first of all that, if there is no change to the equilibrium helper

allocation, the statement follows immediately. Now suppose n’ … n. Let r be the last round of

adjustment before the algorithm stops, and, following (i) and (ii) above, a helper must have

moved from some faction j to i in that round. This means

λ'i = λ8r
i > λr

i $λj $ λmin.

At the same time, by (ii) no faction other than i can gain helpers. Thus

λ'k $λk $ λmin for all k … i.

Therefore λ'k  $ λmin for all k = 1, ... , M and (iii) follows. #

C. Existence of Perfect Sorting Equilibrium

In order to simplify notations, the following shorthand will be used in this Appendix:

ni = ni(Γ),

ni
k =  nk(Γc{i}),

n-
k
i =  nk(Γ \{i}).

If we order all players by their ability so that t1 $ t2 $... $ tN , then a perfect sorting

equilibrium is given by M = {1, ... , M} and a combination of assignment functions {as}s0S

such that
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Pick a combination of assignment functions which, for any s 0 S, as(j) is such that

λa(j)(s) is increasing in j. In other words, given any set of candidates, the assignment will be

such that the least able helper will always get the highest λ, while the most able helper will

always get λmin. This kind of assignment is always possible so our combination of assignment

functions is well-defined. If, with these assignment functions, we can always find an M that

satisfies conditions (C1) and (C2), then a perfect sorting equilibrium always exists.

For an arbitrary M such that 1 # M # N, the following lemmas can be established.

Lemma 3: Given M and the assignment functions we have picked, if the most able helper

does not want to deviate to become a candidate, no helper would like to deviate.

Proof: Consider condition (C2). Let i = M + 1 be the most able helper. By definition, ti > tj

for all j > M. Our assignment function also specifies λa(j)(M) = λmin(M). Hence, for any j > M,

the LHS of (C2) must be larger than that for i. To prove the lemma, it suffices to show that

the RHS of (C2) is increasing in ability.

The candidate sets M c {i} and M c {j} differ only by the ability of one candidate, so

Proposition 2 applies. This gives ni
k # nj

k for all k # M and  ni
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t n
i i

i

k k
i

k M i

j j
j

k k
j

k M j∈ ∪ ∈ ∪
∑ ∑

−

{ } { }
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which is the same as

( )

t n t n t n t n t n t n
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i i
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k M
j j

j
j j

j
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i i
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k
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j j
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k
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∈ ∈

∈

∑ ∑

∑

+
⎛
⎝
⎜

⎞
⎠
⎟ − +

⎛
⎝
⎜

⎞
⎠
⎟

= − > 0

Thus the RHS of (C2) is indeed increasing in ti, which gives the lemma. #

Lemma 4: Given M and the assignment functions we have picked, if the least able candidate

does not want to deviate and become a helper, no candidate would like to deviate.

Proof: Given the assignment function, any candidates who deviate from a perfectly sorted

partition must get λmin after deviation. Then condition (C1) can be written as

           
( )

( )
( ) ( )

W
t n t n M

M i
t n M t n M i

W
i i k k

k M
i i k k

k M i

1
2

∈ ∈
∑ ∑

≥
λmin

\{ }

\ { }
\ { }

.

Given M, the LHS of this inequality is constant for all i # M. Let j = M be the least able

candidate. We need to show that, for any i # M that ti > tj,

.            (C3)
( ) ( )λ λmin

\{ }

min

\{ }

\ { } \ { }M i
t n t n

M j
t n t ni i k k

i

k M i
j j k k

j

k M j

−

∈

−

∈
∑ ∑

≤

If M = 1 the statement is trivial. If M = 2, then

.
( ) ( )λ λmin

\{ }

min

\{ }

\ { } \ { }M i
t n N

M j
t nk k

i

k M i
k k

j

k M j

−

∈

−

∈
∑ ∑

=
−

=
1

1

Since tini > tjnj, inequality (C3) holds.

Now suppose M $ 3. Note that M \{i} and M \{j} differ only by the ability of one

candidate – candidate j in M \{i} is less able than candidate i in M \{j} . Proposition 2 applies

and we have
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λmin(M \{i}) # λmin(M \{j}),

n-
k
i $ n-

k
j for all k … i, j, k 0 M,

n-
j
i # n-

i
j.

In addition, since the total number of players is unchanged,

n n n nk
j

k i j
k M

i
j

k
i

k i j
k M

j
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≠
∈

− −

≠
∈

−∑ ∑+ = +
, ,

( )n n n ni
j

j
i

k
i

k
j

k i j

− − − −

≠

− = − ≥∑
,

.0

Consider then

      (C4)
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Note that the first and the second term are both (weakly) positive. If n-
i
j - n-

j
i = 0, the last term

will also be weakly positive so the whole expression must be positive. If instead  n-
i
j - n-

j
i > 0,

we can define
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≠
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− −

≠
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,
,

,

1

as the weighted average of the ability of all faction leaders k 0 M, k … i, j who have lost

helpers as the set of candidates change from M \{i} to M \{j}. Since all k # M and j is the

least able candidate in M, t¯k $ tj. We can then rewrite the expression (C4) as
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( ) ( ) ( ) ( )

( )( )
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i i j j k k
j

k i j
i j j i

j
j

i
i j j

i
i j

i i
j

j
i

k i j j

− − −

≠

− − −

− −

− + − − − + −

≥ − − ≥
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This means that the denominator of the LHS of (C3) is bigger than that on the RHS. At the

same time, since λmin(M \{i}) # λmin(M \{j}),, the numerator of the LHS of (C3) is smaller than

that on the RHS. Therefore, inequality (C3) must hold. This completes the proof.#

Using these two lemmas, inequalities (C1) and (C2) reduce to

;
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( )

( )
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1 1
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In the case of M = N, define tN+1 = 0. To simplify notations, let

( ) ( )
C M

t n M

t n
WM M

k k
k

M=

=
∑

1

1

and .( ) ( )

( )
H M

M

t n M
W

k k
k

M=
−

−
=

−

∑

λmin 1

1
1

1 2

Then, a perfect sorting equilibrium exists if we can find an M, 1 # M # N, such that

C(M) $ H(M),            (C5)

and C(M+1) # H(M+1).            (C6)

Note that C(1) = W1 > 0 = H(1),

and C(N +1) = 0 < W2 = H(N +1).
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Then, there exists some m 0 {1, ..., N +1} such that C(m) < H(m). Denote the smallest of

these m’s, m*. Since C(1) > H(1), m* $ 2. Now let M = m*-1 and M satisfies (C5) and (C6), as

well as 1 # M # N. This M, together with {as}s0S, the combination of assignment functions we

have picked, constitute a subgame perfect equilibrium. Therefore, a perfect sorting

equilibrium always exists. It should also be noted that our choice of assignment functions is

only sufficient but not necessary for the existence of a perfect sorting equilibrium. Within a

more specific setting, it is possible to construct a perfect sorting equilibrium with some other

assignment functions.

D. Δξ/Δtp < 0

If there are no singleton candidates (L = M), then

( ) ( ) ( ) ( )( )t n M M n M M N Mk k
k

M

k
k

M

= =
∑ ∑= − = −

1 1

1λ λ( )

and equation (10) can be written as

.( ) ( )( )ξ M n M N M
N M

W
WM= −

− +
−

=1 1 2

1

ΔnM/Δtp < 0 by equation (11), therefore, Δξ(M)/Δtp < 0.

If there are singleton candidates (L < M), then when the Mth candidate switches to

helping, he will either (i) join a faction and help an existing leader; or (ii) help the highest

ability singleton candidate. Suppose the marginal candidate switches to helping leader j. This

implies that none of the helpers of j would want to defect to other factions despite the

reduced payoff with the expanded membership, because otherwise the marginal candidate

would have helped someone else. Helpers in other factions would have no incentive to switch

allegiance either. Then, ξ(M) can be written as:



37

.( ) ( )

( )
( )

( )

( )
( )

( )

ξ
λ

M t
M

t n M t

t n M t

M
k k

k

L M

k
k L M

M

k k
k

L M

k
k L M

M
=

−

− +

+

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

=

−

= − +

−

= = +

∑ ∑

∑ ∑
1

1
1

1

1 1

1

1 1

Because nk(M) = nk(M - 1) œ k 0[1,L] and k … j,  nj(M) = nj(M - 1) + 1, and L(M) = L(M - 1),
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An increase in tp increases λ(M -1) and therefore reduces the first fraction on the RHS. It also

increases λ(M) and reduces L(M), but since tj > tM, the ratio in the brackets decreases as well.

If, instead of helping a faction leader, the marginal candidate switches to help another

singleton candidate, then tj = tL(M)+1 $ tM, where L(M)+1 is the strongest singleton candidate

when there are M candidates, with the same result. Therefore, ξ(M) is decreasing in tp.#
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