Yuan Zhou,印第安纳大学伯明顿分校助理教授:随机优化在管理科学中的应用

【主讲】Yuan Zhou,印第安纳大学伯明顿分校助理教授



【地点】清华经管学院 伟伦楼501



【简历】Yuan Zhou老师的简历

【Speaker】Yuan Zhou, Assistant Professor, Indiana University at Bloomington

【Topic】Stochastic Optimization with Applications to Management

【Time】Thursday, June 14, 11:30-13:00

【Venue】Room 501, Weilun Building, Tsinghua SEM

【Language】Chinese and English

【Organizer】Department of Management Science and Engineering

【Abstract】Optimization with large-scale data has been playing an increasingly important role in operations management applications. In this talk, I will use the following two examples to demonstrate how to incorporate stochastic, combinatorial, and machine learning methodologies to address the emerging challenges in this direction. 

1.     Process flexibility is a critical operational strategy for manufacturing firms to improve their ability to match supply with random external demand. Using random graph theory, we show construction of (1-ε)-optimal flexibility structures with only O(ln (1/ε)) overhead cost, an exponential improvement compared to the best 
known O(1/ε) cost achieved by the popular chaining system. 
2.     Dynamic assortment planning concerns about the optimal displaying strategy to maximize total revenue over the selling season with no a priori information on consumers’ choice model parameters. Combining combinatorial techniques and the powerful lower-upper confidence bound (LUCB) method, we develop data-driven algorithms to simultaneously learn consumers’ model and optimize assortment selection decisions. Our algorithms’ performance guarantees surprisingly do not depend on the number of candidate products, which is particularly useful in settings such as fast fashion retailing and online advertising. 
【Bio】Dr. Yuan Zhou is currently an Assistant Professor at the Computer Science Department of Indiana University at Bloomington. He is also a Visiting Assistant Professor at Shanghai University of Finance and Economics and an Adjunct Assistant Professor at University of Illinois at Urbana-Champaign. Before joining Indiana University, Yuan was an Applied Mathematics Instructor at the Mathematics Department of Massachusetts Institute of Technology. Prior to MIT, Yuan was the recipient of the Simons Graduate Fellowship and obtained his Ph.D. in Computer Science at Carnegie Mellon University. He also ranked the 1st in the International Olympiad in Informatics and the 2nd in the World Finals of ACM International Collegiate Programming Contest. 
Yuan’s research interests include stochastic and combinatorial optimization and their applications to operations management and machine learning. He is also interested in and publishes on analysis of mathematical programming, approximation algorithms, and hardness of approximation.